Maximum Principle for Jensons

The version discussed now is applicable to 2-tensors, curvature 4-tensors and more general tensors satisfying heat type equations. The Set-up TT: V--- Mn be a rom Kr real vector bundle w/ Mn closed. let and having a time-dependent metric g(t). Let h be a fixed bundle metric on N. and V(t) be a time-dependent connections compatible w/h, i.e. $\chi(h(u,v)) = h(\nabla H)_{\chi} U(v) + h(u, \nabla H)_{\chi} U) \quad \forall \quad \chi \in \Gamma(M), u, v \in \Gamma(R).$ The time-dependent Laplacian is $\Delta = tr_{q} \left(\nabla \circ \nabla \right) w$ √D(+): ((V@P·M) - r(V@P·M@P·M) is defined using the connection VII) and the Levi-Civita connection D(t) wing g(t). $\nabla^{\mathcal{D}}(t)_{X}(U\otimes \alpha) = (\nabla (t)_{X}u)\otimes \alpha + u\otimes (D(t)_{X}\alpha).$ i.e., ∇^{D} is just a connection ou VOP'M defined by the "product rule". $\Delta_{D} \circ \Delta : L(\Lambda) \longrightarrow L(\Lambda \otimes U, H) \longrightarrow L(\Lambda \otimes U, H \otimes U, H).$ So Let pETI and tE [0,T), we can express the Laplacian at (pit) as follows.

If r(o) is a path in M then v(o) & r(Vr(o)) is parallel along

$$\sum_{k=0}^{k} \Delta(t) \cdot \Delta = 0$$

F path 8: [0, b] → M and VE V₈₍₀₎ I! parallel section V(r) el(V₈₍₀₎)
CE [0, b], along 8 w/ V(0) = V.
So if s(p) ∈ Vp is a given vector, we can extend s(p) to a section
s of V ones a small rod U=p by parallel translating s(p) along
any geodesic 8 emanating from p.

transport. So $\Delta U(p) = \sum (\Delta U^{\alpha})(p) \cdot S_{\alpha}(p)$. so we can talk about the heat-type equations for sections of V. for a family of sections $U(t) \in \Gamma(V)$, it satisfies a heat-type equation if

$$\frac{\partial u}{\partial t} = \Delta u + \nabla_{X(t)} u + F(u,t)$$
where $X(t)$ is a time-dependent v.f. on M and $F: V \times [0,T) \rightarrow U$
o a fiber-preserving map.

just like the case of scalars, we consider the system of ODE
on the fiber
$$V_x = \pi^{-1}(x)$$
 corresponding to the Qn. above as
$$\frac{dU}{dt} = F_x (U_1 t) \quad \text{where } F_x : \mathcal{V}_x \times I_0 (T) \longrightarrow \mathcal{V}_x.$$

<u>Set</u> (invariance under parallel translation) let PCD be a coubset and $P_x = P \cap V_x$ for $x \in H$. We say that P is invariant under parallel translation if I fath $\gamma: I \text{ orb} J \longrightarrow M$ and vector $v \in P_{S(G)}$, the unique parallel section $v(\sigma) \in V_{S(G)}, \sigma \in I \text{ or b} J$ along $\delta(\sigma)$ w/ $v(\sigma) = v$ is contained in P.

Then. (Max. principle for tomoons) Let $K \subset \mathcal{V}$ be a closed subset of \mathcal{V} which is invariant under parallel translations $w \cdot r \cdot t \cdot \nabla(t)$, $t \in IO_{1}T$) and convex in the fibres, i.e. $K_{\mathbf{x}}$ is convex $\mathbf{F} \mathbf{x} \in \mathbf{M}$. Suppose F(u,t) is continuous in $(u_{1}t)$ and is locally hipschitz in u. Suppose that K has the property that for any $t \in IO_{1}T$) and $U(t_{1}) \in K_{\mathbf{x}}$, the solution $U(t_{1})$, $t \in Ito, T'$ to the ODE $\frac{dU}{dt} = F_{\mathbf{x}}(\mathbf{U}, t)$, remains in K_{∞} . Then any solution $U(n_1t)$, defined for $x \in M$ and $t \in \text{Eor} T$) to the PDE $\frac{\partial u}{\partial t} = \Delta u + \nabla_{X(t)}u + F(u_1t)$

which what in K at t=0 (i.e. $U(n_{10}) \in K_{\times} \forall x \in M$) remains use $K \forall f \in E0,T$).

Remark: intersection of two closed, invariant under parallel froms. fiberwise convex sets K, and K2 is closed, inv. under. 11⁺ translation and fiberwise convex.

In the following, it'll be useful to keep in mind the case when $U = \operatorname{Rm} : \Lambda^2 T^{\bullet} M \longrightarrow \Lambda^2 T^{\bullet} M$ and Rm is viewed as a self-adjoint operator on $\Lambda^2 T^{\bullet} M$. Jo, e.g. below $V = \Lambda^2 T^{\bullet} M \otimes_S \Lambda^2 T^{\bullet} M$. In all our applications: the v.b. will be of the form $V = W \otimes_S W$ w/ W another v.b. Using the metric $W^* \cong W = V = End_{self.adjoint}$. move suppose that $U \in V_p$ for some $p \in M$ and $\chi: TO(1) \longrightarrow M = W / Y(O) = p$.

If
$$\hat{U}$$
 is the unique parallel lift of $\delta \circ t$, $\hat{U}(0) = U$.
Suppose we W_p is an eigensection of U_{i} , $i \cdot e$, $\exists \lambda \in \mathbb{R}$
 $U(\omega) = \lambda \omega$.

Let \tilde{w} be the unique parallel lift of $w w / \tilde{w}(0) = w$. Chann:- \tilde{w} is an eigensection of \tilde{u} with the same eigenvalue λ . $\frac{1}{2000} \nabla_{\tilde{v}} (\tilde{u}(\tilde{w}) - \lambda \tilde{w}) = 0 = 0$ $\tilde{u}(\tilde{w}) - \lambda \tilde{w} = \text{constant along } \mathcal{V}$ and at 0, $\tilde{u}(\tilde{w})(0) = \lambda \tilde{w}(0)$.

DO, if
$$r = romk(w)$$
 and $U \in Vp$, let
 $\lambda_1(u) \ge \dots \ge \lambda_r(u)$ be the ordered eigenvalues of u .

lonorder the set

$$\begin{split} & \Gamma = \left\{ \begin{array}{c} (\lambda_1, \dots, \lambda_r) \in \mathbb{R}^n \mid \lambda_1 \geq \dots \geq \lambda_r \right\}. \\ & \text{if } w_1, \dots, w_r \in W_p \text{ are unif engansections of the Vp corresponding} \\ & \text{to } \lambda_1 \geq \dots \geq \lambda_r \text{ sine, } U = \sum_{q=1}^r \lambda_q W_q \otimes W_q, \text{ there generations only } \\ & q_{r=1} \end{split}$$

path
$$Y: [D_1(J \longrightarrow H w) r(o) = |p|, let $w_a: To_1(J \longrightarrow W)$ be the
unique parallel lift of $w_a w = w_a(o) = w_a$. Then
 $\widetilde{u} = \sum_{a=1}^{\infty} d_a \widetilde{w}_a \otimes \widetilde{w}_a$
 $a: 1$$$

b a parallel lift of
$$U$$
 w/ \tilde{u} (o)= U .
=D A a(\tilde{u}) = A a(u) ∀ a = 1,..., Y.

Lomma (Criterion for invariance under parallel translation)
Leppose G:
$$\Gamma \longrightarrow \mathbb{R}$$
 is a function. If cell and
 $K = \Sigma U \in \mathcal{V}$ $G(A(U), \dots, Ar(U)) \subseteq C \Sigma$.

Then the coubset KCD is invariant under parallel translation.

$$\frac{\mathbb{R}_{\text{emark}}}{\mathbb{R}_{\text{emark}}} := \sup_{x \in \mathbb{R}_{\text{emark}}} \sup_{x \in \mathbb{R}_{$$

main application

$$\begin{split} & \mathcal{R}m: \Lambda^2 T^* \mathcal{M} \longrightarrow \Lambda^2 T^* \mathcal{M} = \mathcal{D} \ \mathcal{R}m \in \Gamma(V), V = \text{lym}^2(\Lambda^* \mathcal{H}). \\ & \partial_t \mathcal{R}m = \Delta \mathcal{R}m + \mathcal{R}m^2 + \mathcal{R}m^{\ddagger}. \\ & \text{She associated ODE is} \\ & \frac{d}{dt} \mathcal{M} = \mathcal{M}^2 + \mathcal{M}^{\ddagger}. \end{split}$$

<u>Hunnilton</u> If (Mⁿ, glf) is a RF whose curvature operator is positure (negature) initially then it remains so along the RF.